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Abstract

A simple model problem in exploration seismology requires that a depth-
varying sound velocity distribution be estimated from reflected sound waves.
For various physical reasons, these reflected signals or echoes have very small
Fourier coefficients at both very high and very low frequencies. Nonetheless,
both geophysical practice, based on heuristic considerations, and recent nu-
merical evidence indicate that a spectrally complete estimate of the velocity
distribution is often achievable. We prove a theorem to this effect, show-
ing that “sufficiently rough” velocity distributions may be recovered from
reflected waves under some restrictions, independently of the very low- or
high-frequency content of the data. The main restriction is that the velocity
depend only on a single (depth) vartiable; only in this case are sufficiently
refined propagation-of-singularity results available. The proof is based on a
novel variational principle, from which numerical algorithms have been de-
rived. These algorithms have been implemented and used to estimate velocity
distributions from both synthetic and field reflection seismograms.






1 Introduction.

A simple model of the physical setting for reflection seismology is constant-
density linear acoustics, in which the sound velocity field ¢(z) (z € R3) is
connected to the pressure field u(z,t) via the wave equation:

1 0%u(z,t)
62(22) ot2 - Au(zat) = f(t)&((l?)
u=0, t<0

The right-hand side represents an isotropic point dilatational energy source
radiating with time varying (transient) intensity f(t) (“the source wavelet”).
The seismogram is a sampling of the pressure u at a number of “receiver”
points. We adopt the idealization that these points form the continuum
{z3 =: z = 0} (“the surface (of the earth)”) and that the measurement of
u 1s also continuous in time for some time interval 0 < ¢ < thax. Regarding
the source (i.e. f(t)) as known, the pressure field, hence the seismogram,
becomes a function of the sound velocity:

sle] == ul,-

In this simple model, the fundamental problem of reflection seismology is
to estimate ¢ from s[c|, i.e. to solve a functional equation of the form

S[C] = Sdata
possibly in some least-error sense accommodating the possibility (virtual cer-

tainty!) of inconsistent data error.

This model is grossly inadequate for some practical purposes, as it ignores
significant physics of seismic wave generation and propagation. Nonetheless,
it forms the basis for most contemporary seismic data processing (see for
instance Yilmaz (1987)), and it exhibits two fundamental features of the
“real” problem:

(i) s[c] is nonlinear in c;

(i) f should be chosen to suppress Fourier components in s[c] at
“low” and “high” frequencies.
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Item (i) is simply the nonlinearity of solutions of linear equations as func-
tions of their coefficients. Item (ii) is required by observations of the spectra
of reflection seismograms: for various physical reasons, Fourier components
at very low (< 4Hz) and very high (>80 Hz) temporal frequencies are essen-
tially missing from real reflection seismograms.

The suppression of high-frequency components simply means that ¢
s[c] is a smoothing operator. Techniques for management of the resulting
high-frequency instability are well-known — see e.g. Tihonov and Arsenin

(1976), Miller (1970), Payne (1974).

In contrast, the instability resulting from the lack of low-frequency data
has been little discussed in the mathematical literature on inverse problems,
even though it is nearly ubiquitous in real world parameter estimation prob-
lems based on wave propagation. This low-frequency lacuna is a striking
feature of reflection seismology, in particular, and the possible ambiguities
resulting from spectral incompleteness of data have sparked considerable dis-
cussion within the geophysical research community.

The present paper is devoted to the proof of a uniqueness and continuous
dependence result for a restricted version of the inverse problem described
above, in which the estimates are independent of the behaviour of f(w) near
w = 0. We shall show that c is well-determined by s[c] when c is sufficiently
non-smooth.

This rather strange sounding requirement is natural in view of the appli-
cation to reflection seismology: rapid changes in the mechanical properties
of rock are entirely responsible for the return of substantial echoes to the
surface, hence for the information content of seismic reflection data. The
times of arrival of these echoes — or rather, the signals which simulate them
in the model described above — carry information about the slowly varying
components of ¢, completely independently of the low-frequency behavior of
f. On the other hand, the identifiability of these echoes depends on the
wave nature of the seismic disturbance, in other words on the propagation
of singularity (or regularity), according to geometric optics. This propaga-
tion property clearly requires some smoothness of the coefficients; thus the
conditions necessary for the creation of strong reflected signals are in tension
with those necessary for their propagation.

We show in this paper that this tension can be resolved at least in a special
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case. The resolution requires certain estimates concerning propagation of
regularity currently available only under the additional constraint:

The sound velocity c is a function only of the “depth” variable
273(= Z).

That is, the result detailed here applies to layered fluid models only. The nec-
essary technical results for this class of models were established in previous
papers of the author (Symes 1981, 1983, 1986a, b). These are essentially en-
ergy estimates and are related to earlier work of Rauch and Taylor (1974) and
Kreiss (1967) on mixed problems for linear hyperbolic systems in two inde-
pendent variables. Other authors basing results about 1-D inverse problems

for hyperbolic equations on the same ideas include Fawcett (1984), Suzuki
(1988).

A few remarks concerning the prospects for weakening the layered medium
assumption in these arguments may be found in the next section.

The paper is organized as follows: Section 2 gives a precise statement of
the main results, a brief review of the literature, and discussion of related is-
sues. Section 3 introduces the plane-wave decomposition and estimates for the
plane-wave problems from the author’s previous work; this material forms the
technical basis for the rest of the paper. As we are concerned mostly with the
information independent of the low-frequency behaviour of f, we introduce
in Section 4 the (temporary) assumption that f is a compactly supported
measure, defining an elliptic convolution operator bounded on L*(R). Under
this assumption, we prove an estimate of Garding type for the derivative
of the plane-wave seismogram map. In order to do more, it is necessary to
consider the various plane-wave problems simultaneously. Each plane-wave
model is parameterized by the vertical plane-wave velocity, viewed as a func-
tion of (its own) travel-time. These models are a prior: independent. We
derive a coherency condition in Section 5, equivalent to the existence of a
(single) velocity profile c(z) from which all of the plane-wave models are de-
rived (i.e. “every (plane wave) experiment sees the same earth”). In Section
6 we show that a least-squares version of the inverse problem stated above,
posed in terms of the plane-wave models and augmented by the coherency
condition (as a so-called penalty term) has a positive-definite Hessian (second
derivative) operator at a consistent (zero-residual) solution provided that the
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corresponding velocity profile is sufficiently rough, as stated above. Our main
result follows immediately via the implicit function theorem. So far we have
maintained the elliptic assumption concerning f; this is dropped in Section
7, for the usual price, paid for the solution of compact operator equations,
of a priori constraints on the smoothness of c.
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2 Statement of Main Result, Discussion.

In this section we give a precise statement of the major result of this paper,
followed by a brief review of the literature and a conceptual overview of the
problem described above.

Since the principal goal of the present work is the production of a “so-
lution” of the inverse problem stated above with continuity properties inde-
pendent of the low-frequency behavior of the source wavelet f, we make the
temporary assumption that:

f € &'(R) is a Borel measure, defining a bounded elliptic convolu-
tion operator on H'(R): i.e. for positive Ko, K1, K*, ¢ € H'(R)

3
Kl "—8'% L2(R) - KO ”¢”L2(R) (2 1)
< Yy < 5 |
- dt|lL2(R) — atlzm)’

Also, suppf C {te R:t > 0}.

Such a distribution necessarily has a finite first moment

ml = sup (fa t¢)

T gec |4l
The “elliptic” assumption (2.1) will be weakened, to the extent possible, in
Section 7. The simplest example of wavelets (i.e. kernels) f having the
elliptic property (2.1) are obtained by subtracting from a slightly shifted

Dirac delta function a smooth approximation.

The conventional, though perhaps ill-founded, choice of measure for the
seismogram error is some weighted version of the L?-norm — see Tarantola
(1987), Chapter 6. We shall adopt this choice also. The elliptic nature of f
precludes square-integrability of s[c], however, as can easily be seen, so we
choose what amounts to a very singular “weight”: we define, for suitably
small slowness p,

Sle)(t,p) = //d$1d$2%3[6]($1,$2,t + pz1)
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That is, S is a version of the Radon-transform of s, which we shall further
restrict to a rectangle {(t,p): 0 <t < T, P, < p < P} =: R;. It is easily
seen that, for smooth ¢, any Ty > 0, and P; sufficiently small, S is square-
integrable (Santosa and Symes (1988)). Thus the basic data set of this paper
will be a member of L?(R;).

Another piece of notation needed to state our main result is used in
our method of measuring “roughness”: as mentioned in the introduction, a
stable solution of the inverse problem can only be expected for sufficiently
non-smooth coefficient c.

The “roughness” measure depends on an arbitrary Dirac kernel h; €
C$(R) satisfying

>0, hy(0) >0, /h1=1

Set 1 .
bu(s) = ~ha()
For Zy,e,A > 0, c € H}_, define
B 1 4%,
Plc](Zo, A) = o A s |<'|
€ [+%
rc)(Zo, €, A) = OSiZHSon NN |RL * |2
2 4%
r*lc](Zo,e,A) = sup |RL * |2

0<2< 7o A z— %

These are local average measures of fluctuation. For example, r, is a siz-
able fraction of 7, 7* when c has significant Fourier components at frequencies
proportional to %, locally uniformly on the length scale A.

The geometry of the plane-wave problem which will occupy most of this
paper is determined by the travel-time function

z /1
) =2 [ 57

which gives the time necessary for a point on a planar wavefront at slowness
p, fixed horizontal coordinates, to travel to depth z and back to the surface.
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The earlier results of the author (Symes 1986a,b) imply that S extends to
a bounded, continuous map on the bounded set 3°. C H}, (R) parameterized
by positive numbers Ty, P, co, 1, ¢*, according to

. = {ce H (R):c(z) =co,2<0; for
Zo >0 sothat To=1(Zo, P),

|| log c|| rr1(0,20) < €7

c(z)=e1 for z2Zo}

We have also shown, however, that this extension is not locally Lipschitz-
continuous, and certainly not differentiable, in these metrics. S does become
differentiable when the domain is metricized more strictly (H?), but then the
derivative fails to have a lower bound. Thus the implicit function theorem
does not apply to the solution of least-squares problems for S. The compu-

tational consequences of this pathology are also striking (Santosa and Symes
1986).

A suitable family of “rough” subsets X of X, depends on positive param-
eters My, M,, € and A according to

¥ = {c€X.: for Zy >0 such that
To = 7(Zo, P1) and some 0<e<E 0<AL A,
the following inequalities hold:
M, < r.(Zo,¢e,A),
Myr.(Zo, €, A) > max(7(Zo, A),7*(Zo, €, A))}

We shall verify that X’ is nonempty for suitable choices of parameters.

The main result of our paper is:

Theorem 1 Suppose that 0,To < T1,0< P, < P, 0< Ky, 0 < K; £ K*
0 < co,c1,c* are given. Then there exist constants My, Mo, €, A,m, and L*
depending on Ty, Ty, Py, Py, Ko, K1, K*, co,c1, and ¢* so that if f € E'(R)
satisfies (2.1) and

m} <m
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then T. is nonempty and there exists an open neighborhood U of the set
{S[c) € L*(Ry): c€ X}

and a map

I:U— L} (R)
so that
(1) force€ X, IS[c] =¢;
(i) for D1,D, € U, Z; > 0

11(D1) = I(D2)llL210,24)
< L*||Dy — Dalir2(my)

Thus we obtain a continuous left-inverse for S, under various constraints.
The requirement that ¢ be constant for large z is simply a way of controlling
c at depths below the zone influencing the seismogram. That the zone of
constancy begins at Z such that To = 7(Zo, P, ), rather than Ty = 7(Zo, P1),
is an unfortunate side-effect of the “width” of the source wavelet f: since
supp f is not a point, the depth interval in which the seismogram gives
sure control over the velocity coefficient is strictly smaller than the depth
interval needed to compute the seismogram. Given an arbitrary velocity
profile with mean ¢, near z = Zo, one can of course truncate it to a member
of ¥, i.e. by setting the velocity constant (= ¢;) for z > Zo, as in the
definition. The corresponding seismograms are then different only in the
“gap” (To < t < Ty). If the original profile obeys the uniform roughness
conditions as in the definition of X', then it follows from arguments similar
to those in Sections 3 and 4 that the L?-norm of the difference of seismograms
is O(m}). The theorem then gives the same qualitative estimate for the error
due to application of I. We leave to the reader the formulation of a theorem
embodying this extension of our results.

A more subtle consequence of this gap is that the value of c in this “base-
ment” region must be specified a priori, i.e. the condition that c(z) = ¢ for
z > Zo. It seems clear that this additional piece of data should have little
influence on the values of ¢ at shallower depths — and, to the extent that it
does, should be determined by S as well. This may be a fruitful subject for
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further work; some related ideas are discussed in Sacks and Santosa (1987).
In any case the author does not see at present how to formulate a convenient
theorem without such a restriction.

It is easy to see that the Lipschitz estimate (ii) cannot be strengthened
much. See Symes (1986b) for instance. In particular it is not possible to
replace L? by H* on the left-hand side.

Estimates of the sort presented in Theorem I are only of qualitative im-
portance. Numerical evidence (Symes 1988b,c,d) indicates that typical values
of the Lipschitz constant L* are very large. On the other hand, restriction
to a submanifold of ¥ of small codimension diminishes L* to a useful mag-
nitude, while leaving enough freedom in the model that some information
about c is still obtained from the data. Analysis of an approximation to S in
Symes 1988a,b illustrates this feature. A full understanding of the need for
this “residual regularization” is still lacking at this writing.

The significance of the present result lies in its reliance on the implicit
function theorem: i.e. the stability follows directly from linearization stabil-
ity, and any residual ill-conditioning can be improved by the straightforward
addition of linear constraints. This is surprising — and, perhaps, of practi-
cal importance — since the implicit function theorem cannot be applied to
S directly, as noted above, for elliptic f.

The left inverse I will be produced via the solution of an auxiliary least-
squares problem, developed in Section 5. In Section 7 we remove the elliptic
requirement on f, to a certain extent: for suitable f € C§°, we obtain an
approximate left inverse to replace I, which depends on a choice of regular-
ization.

We conclude this section with a brief review of the literature and of the
background of the present approach. Recent papers treating inverse prob-
lems for hyperbolic equations include Blagovaschenski (1974), Bamberger et
al. (1977, 1979), Bube and Burridge (1983), Burridge (1980), Carroll and
Santosa (1982), Santosa and Schwetlick (1982), Bruckstein et al. (1983),
Ramm (1987), Fawcett (1984), Symes (1986a, b), and Suzuki (1988). (This
list is by no means exhaustive.) Most earlier papers in the mathematical lit-
erature on inverse problems for partial differential equations concern obstacle
scattering (Lax and Phillips (1968), Majda and Taylor (1976)) or quantum
mechanical inverse scattering problems (Chadan and Sabatier (1977)). Prior
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work on inverse problems in wave propagation is to be found mostly in the
geophysical literature: notable examples include Goupillaud (1961), Ware
and Aki (1969), and Gerver (1970). Note however that the seminal paper in
this field — Gel’fand and Levitan (1951) — may be viewed as a discussion
of an inverse problem in wave propagation: see Symes (1979).

While a few of the above references provide rigorous treatment of the cen-
tral uniqueness, existence, and continuous dependence issues, none treat the
“bandlimited” problem described in Section 1 in a satisfactory way: with-
out exception these works either assume the low-frequency content problem
away, or ignore it. The problem is well-known to geophysical researchers,
and its severity is explicitly illustrated in Pao, Santosa and Symes (1984)
and Gray and Symes (1985).

Note that even the known uniqueness theorems for several-dimensional
inverse problems in wave propagation either require data in a frequency in-
terval [0,w) (Sacks and Symes (1985), Sun (1987), Ramm (1986)) or do not
allow the reflection configuration (sources and receivers separated from the
target region by a hyperplane (Nachman (1987), Rakesh and Symes (1988)).
Thus the present paper is the only instance, to the author’s knowledge, in
which any version of the reflection inverse problem has been shown to be
well-posed in the presence of a low-frequency lacuna.

Nonetheless, evidence of two sorts indicates that velocities, at least, are
quite well-determined by bandlimited data. First conventional seismic data-
processing, as practiced by academic and industrial reflection seismologists,
appears to produce such information. While based on numerous drastic
approximations, the so-called “velocity analysis” procedures incorporate a
great deal of data-driven insight; see for example Yilmaz (1987), Ch. 3. A
side-effect of our work is to provide a partial but rigorous mathematical basis
for these important techniques.

Second, recent numerical investigations of the nonlinear least-squares
problem

min s[e] - sawalt (22

have turned up more direct evidence that bandlimited seismograms deter-

mine velocity profiles: See Kolb et al. (1986), MacAulay (1985), Gauthier et

al. (1986), Mora (1987). All of these papers also reveal that any reasonable
setting of (2.2) results in a very difficult optimization problem. The reasons
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for both the success and the difficulty of this so-called “least-squares inver-
sion” are noted briefly in Section 3, and explained in great detail in Santosa
and Symes (1986), to which we refer the reader for extensive discussion. In
any case, the computational difficulty of (2.2) was the main motivation for
the work reported here, which relies on a different, “relaxed” least-squares
problem (Section 5).

In this paper, we give only a qualitative analysis of this “relaxed” prob-
lem, which we call the coherency optimization problem, leading to Theorem
1. A quantitative analysis of an approximation appears in Symes (1988a),
and numerical experiments are reported in Symes (1988b,c,d) establishing
the feasibility of the optimization, its relative insensitivity to noise and its
favorable comparison to (2.2) regarding computational efficiency. In Symes
(1988d) the technique is applied to field reflection seismograms with quite
satisfactory results.

A very important remaining question concerns the extension of these re-
sults to other models, notably to non-layered velocities (i.e. ¢ depending
on all space variables). As shown in Symes (1988a,b), an approximation
to the coherency optimization problem can be formulated for the general
nonlayered fluid model. A full-blown extension of our results awaits bet-
ter understanding of propagation-of-regularity for hyperbolic equations with
nonsmooth coefficients, and implications for the relation between solutions
and coeflicients, analogous to the results for problems in two independent
variables detailed in Section 3.
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3 Preliminary Considerations: Reduction
to Plane Waves, Properties of the
One-dimensional Forward Map

We assume that seismograms are given on an open set ) of the space-time
boundary of cylinder form:

Q=Q x [0, tmax]

with €’ a neighborhood of the “source” point £ = 0. We shall also assume
that all velocity profiles c : R — Rt satisfy

0 < cmin<c(2) cmax, 220 (3.1)

for a priori fixed cmin, Cmax- Whenever convenient we will also think of (3.1)
as an L*(R)-bound on log c.

The principal technical device of this paper is the introduction of the
Radon-transformed field

U(p,z,t) := ./R2 dz u(z,z,t+p-z1), p€R.

Standard arguments show that U is well-defined for small p,t under the as-
sumptions made so far. For an attempt to maximize the domain of definition
of U, see Santosa and Symes (1988).

A straightforward calculation shows that for suitably small p > 0 so that
CmaxP < 1,

1 W o*U
———(z,t) = =—(2,t) =46 t
gy 5 o) — (e = 82 62

U=0, t<<0
where the vertical wave velocity v(z,p) (or v|[c], to emphasize the dependence

on c) is defined by
c(2)

v[el(z,p) = ——I—:j;;E;S;;
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Because of the a priori bounds (3.1), the support of u, hence of s, is contained

in a cone
Cmaxt Z V |3}|2 + 22

Therefore, for sufficiently small ppax(< ﬁ) there exists Tmax < 0 so that for

R = {(t,p) :0 S t S Tmax |p| S pmax}

we have for (t,p) € R

ou
S[C](t,p) = 3{(1’? 0, t) - f(t) =
Ou
ot
i.e. the domains of integration of the Radon integrals intersect the support

of u inside 2. We assume tacitly in the sequel that all (¢, p) domains satisfy
this constraint.

(3.3)

Jr2 dz(La (2, 2, t + pz1) — f(t + p21)é(2))

From standard facts about the Radon transform (e.g. Helgason [1980],
Section 1.4) it follows that, if s[c] were square-integrable, we would have

IS[ell|? := [ Jrdt dp p|S[c](t, p)I?
< |Isle]llZ2a)

(see alternatively Santosa and Symes (1986, Appendix B)). As noted in the
introduction, s[c] is not square-integrable, but it can be shown that a version
of (3.4) holds in which the r.h.s. is replaced by the norm of a “pseudodiffer-

ential projection” of s[c].

(3.4)

Now we recall some facts about the one-dimensional seismogram map
Sle](-,p) =: So[v] (fixed p) for which references are Symes (1986a,b). It is
convenient to include explicitly the source wavelet temporarily in the nota-
tion. That is, write So[v, f] for the map defined by the solution of (3.2),
(3.3) followed by restriction to fixed p. Recall that f is assumed to define an
elliptic convolution operator of order zero. For the choice f = §, Sp defines a
bounded continuous map from

HY"(R,v) = {v € H'(R):v =, for 2 < 0,logv € Hf:,c(R)}
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into L?[0,T) for any T > 0, but So[-, 6] is not locally uniformly continuous
(Symes 1986b). In order to recover the necessary degree of regularity for the
arguments to follow, we introduce the “travel-time velocity” [c| defined by

VOT ="

where . 1
r(2)=2] -

o v

is the (one-way) travel-time. More discussion of the map ¢ +— [c] appears in

Section 5; see also Symes (1986a). A short calculation shows that U, defined
by

U(7(z),t) = U(z,t)
satisfies

1
=% W e.)= L)

Set 90

U

Sol6, 1(t) = 5 (0:1)

We recapitulate a number of properties of So. With exceptions noted be-
low, all of these may be found in Symes (1986a). Note that So[?, f] =
So[v flif 507 =wv. Sy also defines a bounded map: HET(R,v0) — L2 (R)
for any vy > 0. Moreover, So is actually of class C?, viewed as a map:
HY*([0,T/2),v0) — L*[0,T). The derivative is given by the formal pertur-
bation (60 € HY (R), §6 =0,z < 0)

o) 5o o) e

0 6v8U

§U=0, t<<0
6T
DSQ[U f]5v = 7 o
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so that
150(5 + 6, f] — Sol®, f]1 — DSo[B, £] - 65||z2p0,11
= o ({168l to,7/20)

For f = 6, more is true: for constants C_,Cy > 0 depending on || log #|| g1(0,7/7]
and on T,

060 % rn .
C_ 7’1 < | D3ols, 6167, .

T || 210772 [0.7] (3.5)
<o 069 '
U+

oz L?[0,T/2]

Also, for f = H (the Heaviside function), there exists Co depending on
|| log || 1[0, 7/2) and on T so that

1DSo[8, H]85]| 210,77 < Coll88]| 210,72 (3.6)
Note that for 65 € HL_, DS,[#, H|6% € H}, and

DSo[9,6) = %DS’O[G,H]
Also . .

Sol6,f] = £ So[5, 6]

DSo[ﬁ,f] = f*DSo[’D,(S]

All of these results are based on simple local energy estimates; with the
exception of (3.6) they are stated explicitly in Symes (1986a). The Heaviside
estimate (3.6) is not given there, but the proof presents no novelties; it will be
given in any case in the forthcoming monograph on layered inverse problems
by Santosa and the author.
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4 Ellipticity for the One-dimensional
Forward Map

We have assumed (until Section 7) that f € £'(R) defines an elliptic convo-
lution operator of order zero. Since DS&,[#,86] for log# € HJ._ is invertible,
((3.6), (3.7)), it seems clear that DSo[5, f] = f * So[, 6] should be “elliptic”
as well. The purpose of this section is to formulate and prove a precise result
along these lines, keeping track of the dependence of various constants on
the H'-norm of #, the time- and depth-intervals used, etc., etc. The result
is a Garding-type estimate for DS,, which requires that DS, be given on
[0,T1], Ty > To, to estimate 60 on [0, Tp). It is clear that a little “extra” data
is required, since the support of f is not assumed to be a point. In fact,
the principal constant intervening in the estimates is the first moment of f,
which measures its “spread”, and is related in the estimates to the size of
the necessary “margin” 17 — Tp.

Select a cut-off function ¥ € C*(R) with ¢(t) = 0for t > Ty and % (t) = 1
for t < Ty, and define the smoothly cut-off version of Sp:

5,1, = ¢S'o

so also

D&, :=¢DS,

In the following, we will apply the estimates of the previous section on
various t-intervals. Since the constants C_,C,, etc. depend on the length
of the interval, we will include the length explicitly in the notation, for the
moment. Thus for estimates on the interval [0,T], C- becomes C_[T], etc.
These constants depend on the H'-norm of log & on the appropriate intervals.

Recall that “elliptic”, applied to f, means the inequalities (2.1), which
we recall here for convenience: for ¢ € H'(R),

K* @ > \f * o¢
Oz [2(R) or L*(R)
d¢ (4.1)
> — - K,
> K5 . 8l L2(r)
suppf C Rt
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From (3.5) and (3.6), for log € Hp(R), 60 € Hj, (R), 5(z) = vo for £ < 0:

1D3y 5, 8165\ r2my < |DSol#, 6601 2210.73)

06v 4.2
< Cy[Th] Bz (42)
T \r2[0,11/2)
Whiie . .
| DSy [, 6160l L2(r) = | DSo[®, 8]63| L2(0,12)
O 4.3
> C_[To] 9% (43)
Oz L2[0,To/2)]
Also N
|DSy[o, H)63|| L2 m+) < ColT1]||65]| 20,1, /21 (4.4)
Now

DSy[5, f165 = o f * DS[®, 660
f * DSy[5,6]60
+e

where for e we have the standard commutator estimate

llellzay < 19| Lomfl| DSol, 6166l 210,131

Here m} denotes the measure norm of the distribution

¢ — (|f],t¢)

i.e. the first moment of f, as explained in Section 2.

4.2



Combine this estimate with (4.1)-(4.4) to get

1D Solv, £169| 21021 = DSy, 1602wy

> || f * 2 DSo[8, H|65]| 2r) — llellz2my

> ||f * &9 DSo[5, H65||2(w)
—|1f * §£DSo[®, H63 12 (r) — ll€llz2(my

> K[| &4 DSo[5, H]63|| 2Ry — Koll$ DSo[8, H]60]| 12w
—K*||3£DSo[5, H86||z2(r) — llellz2(m)

> K1 DSo[5, 669l 12(0,1) — Koll DSo[B, H185||1210,73)

— K*||DSol#, H|66|| Lagry 1)

|
at |lL=(R)

—m}|| 52| oo () 1D Sol5, 8188|| L2p0,73)
> K, C_[To]|| %HLQ[O,TOﬂ]

—Col[T7] (Ko + K*

5 .

a—’f"Lw(R)) 169]L210,7: /21
—m§| %o e @) C+ Tl T2 220,712

The upshot of all of this is the inequality

287

oz

1DSo[6, 165l 210.1 = KiC-[To] |

—m} |3

L2[0,T0/2]
Ci[T) |52

.

—Cy[T}] (KO + K

L2[0,T)/2)

oy

Az

L,X,(R)) 1631|2072 /21

Remark. As noted in Symes (1986a), in general the constants C4[T], Co[T]
increase with T, while C_[T'] decreases.

Remark. It is worth noting the relation of the various bounds involving f to
its Fourier transform. Indeed, obviously

K* 2 || flleo(my
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whereas Ko, K; are related to the detailed behaviour of the Fourier transform
near w = 0. Suppose that, for some K., @ >0,

If()| > K. for |w|>Q (4.5)

(i.e. [Q,00) constitutes the “passband” of f, measured with tolerance K.).
Then for ¢ € H'(R), it is easy to see that

¢ 0¢
f * Z Ka- [ ‘_
71 ot

which gives the relations

- Q|I¢I|L2<R)]

L*(R)

K > K., Ko <QK,
Note also the effect of scaling: if f satisfies (4.6), then

fty = 2

G
satisfies (4.6) with Q = Q/e, while m} = em}. Thus K, = O(1), Ko = O(3),
and m} = O(e) as € = 0.

It is clear from the preceding discussion and the form of (4.5) that, for any

prescribed Ty > Ty, % as above, and any “base” source wavelet f, a scaled
version of f will have small enough first moment that

Q_té
Oz

1

1
mj C+ [Tl] S "2‘1(1 C_ [To]

L>(R)

with fixed K, (independent of scaling). Note that we can certainly choose
so that
9y

oz

These obserations establish the non-vacuousness of

2
Loo(R) - Tl - TO

Theorem 2 Choose Ty > Ty > 0, and K* > K; > 0. Then for any logv €
H _(R), there exists m, Ly, L1, Lo > 0 depending on v and on Ty, To, K* K,
and so that if f satisfies (4.1) with some Ko > 0 and

1 —
my < m
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then for 60 € H _(R),

_— . 0év
1DSo[3, f163l|2210,131 + M} La | =—
25 T 1210 /2,11/2)
v
2 In|| == —Lol|8v|| 20,1y /2)
T ll2[0,10/2]
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5 The Optimum Coherency Principle

While we have shown that the linearized one-dimensional forward map is el-
liptic under the circumstances which concern us, it is certainly not boundedly
invertible — or rather, the hypotheses concerning f do not imply any uniform
bound on the inverse. This circumstance is widely remarked in the literature;
for a sampler, see Santosa and Symes (1986), where numerical examples are
also given (see especially Chapters 6 and 7). Recall, however, the provenance
of the one-dimensional problem: it governs the propagation of a plane wave,
the surface data for which are identical to the Radon transform of the point
source surface data at fixed slowness (or angle). The possibility remains that
the collection of all (precritical) plane-wave data might constrain the velocity
estimate more severely than does a single plane-wave component.

In this and the next section we confirm this possibility. Since we will
consider the data in an interval of slownesses P, < p < P,, we will work with a
suite of travel-time velocity models {3(¢,p) : 0 <t < T, P, < p < P2}. Recall
from Section 3 that these are derived from velocity profiles ¢(z); accordingly
we begin with the question: what condition must (¢, p) satisfy in order that
? = [c|] for some ¢? That is, we seek an operator whose kernel is identical
to the range of ¢ — ¥[c]. We will call membership in the null space of
the required operator (or in the range of ¢ — ¥[c]) the coherency condition,
since coherence of the travel-time velocities ¢ is then forced across various
values of p: all are representations of the same mechanical model, in different
coordinate systems.

Denote by ((t,p) the inverse of the two-way travel time function 7(z, p),
1.e.
((tvp) d
t=2/ i
o v(zp)

p) = [ dritr,p)

We will now regard ( as being defined by this formula, hence as a functional
of 9. So, given ¥ we can compute (, whether ¥ = 9[c] for some ¢, or not.

Then clearly
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Thus we can compute the quantity

~[o] = [ﬁ + pz]

(Here 50~ !(2,p) = 9({"*(z,p),p)). Referring to the definitions (Section 3),
we see that if ¥ = 9[c|, then

. 1
ol =+
and is thus independent of p: that is,
6—ﬁ[c]=>£[ﬁ]=0 (5.1)
= e = )

This last condition still involves the travel-time change of variables, so does
not define a sufficiently regular function of 9 (recall the discussion in Section

3). Define instead

Al = - | all] ¢

2 |0p
~3
- _% [aﬁp(ﬁ 0 g-l)-2] o ¢ — pi (5.2)

Y TR RN G

A short chain-rule calculation gives

8 ., 2 [t/2 9
(a‘f )°<“50 7

which relation allows us to view Q[#] as a functional of ©. Clearly, from (5.1)
b =9[c] = Q] =0

It will be important to define the coherency condition in such a way as to
have the largest possible domain contained in HLO(R x [Py, P;]) (which will
be the natural domain for the forward map, defined below). An obvious

choice is H!, but Q is not continuous in that topology. As it happens, we
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can replace Q with another operator having the same kernel, but which is

continuous (even C*) in the H' sense.

Suppose temporarily that ¥ = 9[c] for some c. Then

1~ 105 2 [ 208\ 06,
o - 1-2([75) 8

8 (2 29w t2
= 52(50 5;‘21”/0 )

I
o

Thus

The map

therefore also satisfies

& =10[c]:=> Q[v]=0

(5.3)

(5.4)

On the other hand, for any T > 0, R = [0,T] X [P1, P2}, Q obviously defines

a C%-map

Q: H'(R) — L*(R).

The following converse to (5.4) shows that @ = 0 is an adequate coherency

condition:

Lemma 1 Suppose that logd € H'(R) and Q[t) = 0. Then for some Z > 0

and some c € H'[0, Z],
= 9[d|r

(41

Proof: Integrate in ¢:

0 = [ arQpit,p)

2 (0%, t
/0 dt{g};(t,p)—%[/o

t/2 5 t/2
= / dt'@(t’,p) — 2pi(t, p) / dt'v*(t', p)
0 Jdp 0

!

0o
t

5.3

/2
dt"52(t", p)] 5 (tp) = po3(t, p)}



after integration by parts, so we once again recover the relation

1 rt/2 8% t/2
LT g [T
9Jo Op 0

It follows immediately that Q[5] = 0 as well, which is equivalent to

8 ] —
5;7[”] =0

Set
Re = {(zp): A<p< Py 0<z<((T,p))

v = Do(?

It is easily checked that logv € H'(R¢). On the other hand with

-1/2
L, o
(v<z,p>2 ”)

= 1[0]7"/*(z,p)

we have c € H[0,Z], Z = SUPp, <p<p, C(T,p), and

c(z):

z]
-1 — 2/ -
Cp=2)
whence (~! = 7, and the conclusion follows.

q.e.d.

We now turn to the definition of the multi-plane-wave forward map. For
simplicity, define seismograms on the data rectangle

Rl = [O,Tl] X [Pl,PQ]
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Choose ¢y, ¢; > 0 with g P, c1 Py, < 1, T, > Tp, and £* > 0 and set
Y = {9 € Hy.(R x [P, P]) :

- Co
o(z,p) = T’ © <0,
G
’U(.’Z,',p) - 2
1 - cip?
T > sz

|| log 8| g2 0, 1 71 x 1Py Py < Z*}
and its “tangent space”
Y= {ve HL (R x[P,P)]):
év(z,p)=0, <0 or z2> %Tg}

Only a finite interval in ¢ is needed for the arguments which follow. With
T> > T to be determined below, set

Ry =[0,T3/2] x [Py, Py

Identify elements of 2 and Z with their restrictions to R, and topologize
Y and Y as subsets of H'(Ry).
With these conventions, define the forward map
S' . Z — Lz(Rl)
by ) )
S[ﬁ](t,p) = SO[ﬁ(Up), f](t)
with S, as in Section 4. From the results stated there and in Section 3,1t

follows that S is of class C2, with derivatives bounded in terms of co, T}, 7,
and £*.

The derivative DS[#] also obeys an “elliptic” estimate. To state this, set
I;?O:[OaTO/Q] X [PI,P2]7 Rl =[03T1/2] X [PlaP2]°

Then from Theorem 2 follows
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Theorem 3 Given P, > P, >0, T1 > Ty >0, K* > K; >0, and ¢* > 0,
there exist m, Lo, Ly, Ly, Ly > 0, so that for Ko > 0 and f € £'(R) satisfying
(4.1) and

m} <m

so that for ¥ € 2,66 € Z

&1t o 060
| DS{5)69]|12(ry) + m}Lz .
95; ELLUAYS)
v .
2 L Er L0||5v”L2(R1)
L*(Ro)

Moreover, for each p € [Py, P,

S cm 069
| DS[6165(-, p)||L20,73) + m} L2 T(',P)
T L2[Ty,/2,T1/2]
060 .
> I -—a——(',p) ~ Lo||65(-, p)|| 210,12 /21
T L2[0,T0/2]

In view of Lemma 1 and the obvious relation
S[lc)] = Sle]

we can now state a version of the inverse problem closely related to the
least-squares problem (2.2), as

minimize ||S[v] — D”%P(R,) over b € Y (5.5)
subject to Q[v] =0 '
In fact, a solution to this problem clearly yields a solution to (2.2) on a suit-
able depth interval. On the other hand, this problem would appear to have
the advantage of regularity: both the objective and constraint functions are
of class C%. Moreover, it is possible to show that, under the circumstances
described in Theorem 4 below, the Hessian operator of the objective func-
tion is positive definite on the null space of the linearized constraints, at a
consistent data set, i.e. when

D = S[c"]
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for suitable c*.

Unfortunately these properties are insufficient to yield a stable-local-
existence result. To motivate the next step in the development, we digress,
with a brief review of Lagrangian theory for constrained optimization, and a
simple but closely related example.

Suppose that X,Y are Hilbert spaces, f : U =+ R,g : U — Y smooth on
an open set U C X. As is well-known (Luenberger, 1973), a local solution of
the constrained optimization problem

minimizezey  f()
subject to g(z) =10

is a critical point of the Lagrangian

L(z,A) = f(z) + (A g(2))

We wish to apply the implicit function theorem, to assure that a solution is
stable against (C?—) perturbations in f. The conditions necessary to apply
the implicit function theorem to the critical-point problem

grad ;. ,L(z,A) =0

are also sufficient to ensure the convergence of Newton’s method (and, gener-

ally, of its computationally efficient quasi-Newton relatives). These amount
to

Dg(z)éx =0
(1) = (6z, [Hess f(z) + (A, Hess g(z))], 6z)
> 6,62
(if) [[Dg()"All = L[ Al

for constants ¢,,¢; > 0. The so called “second-order sufficiency” condition
(i) may be verified for the problem (5.3), as was mentioned above. The so-
called “constraint qualification,” however, fails, in the manner illustrated by
the following simple example, which captures the main features of (5.5).
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Let X = {u € HY(R) : [ [ru = 0}, Y = L*(R), R = [0,1]? the unit
square in R2. Set for u € X, v € Y given,

2

Ou

— -

£ = | 5

L*(R)

0
9(w) = 5

and let us suppose that v = v(z,), so that the problem

minimize,ex grad f(u)
subject to glu)=0

has the unique, zero-residual solution
2
u(zy,z2) = / dz v(z) + const.
0

The second-order sufficiency condition (i) is an immediate consequence of a
form of Poincaré’s inequality (Necas, 1967). The adjoint Dg*(u) is given by

0
Dg*(u) = —Na—xz

where A is the solution operator of the Neumann problem: A'b = w, where
(I-Aw = b inR

Oow
on
Set Ax(z) = cos kymzy cos komxy for k € Z2. Then

=0 on OR

2k,
I1Dg" (WMl my = —m—
Ny

which can be made as small as one likes by taking k; large. Thus the con-
straint qualification (ii) fails.

For similar but nonlinear problems such as (5.5), the nonzero singular
values of Dg are proportional to the instantaneous radii of curvature of the
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constraint set. The failure of the constraint qualification could conceivably
be associated with the presence of arbitrarily small radii of curvature —
indeed, this must be the case for uniformly nonlinear problems like (5.5). In
essence, the constraint set for such a problem has a cusp at every point! No
reasonable stability properties can be expected for the solutions of such a
problem.

On the other hand, the Hessian operator of the “penalized” cost functional

f(u) + o*llg(w)llZary

is positive-definite for any o > 0 — again, this is simply Poincaré’s inequality.
This observation motivates the following construction.

For choices of time and slowness intervals T, > Ty > To > 0, P, > P, > 0,
“data set” D € L*(R;) and “tuning” parameters o, A > 0, define for ¥ € 3°

Tl = 3 {361 - D

2 2 1 A~N2

oy + 1901,
@ (5.6)
oz

L2(ﬁ2\ﬁo)}

The first two summands in the definition of J, ) are motivated by analogy
with the “Dirichlet” problem discussed above. The form of the “elliptic”
estimate ( Theorem 3) and the need, explained in the next section, to choose
T, > Ty motivate the last term. For example the elliptic estimate gives a
bound on 67 only on the shorter interval [0,Tp], so 69 must be bounded a
priori for t > Ty.

We shall call the three terms on the r.h.s. of (5.6) “data,” “coherency,”
and “extension” terms. Minimization of (5.6) is the “coherency optimization
problem.”
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6 Proof of the Main Theorem

We begin this section with the proof that the Hessian operator of J, ) as
defined in Section 5 is positive-definite at a sufficiently rough, coherent o.
The main idea is that the Hessian quadratic form consists of the “data” term
dominating the high-frequencies in 6%, and a “coherency” term essentially
consisting of the product of the indefinite integral (in ) of 60 and a derivative
of ©. This latter term is thus the product of a smooth factor (depending on
8%) and a rough factor (derivative of #). When the rough factor is rough
enough, uniformly on the length scale of significant change in the smooth
factor, then the product dominates the smooth factor. Lemma 3 below makes
this heuristic reasoning precise, and establishes a mathematical meaning for
“sufficiently rough.” The “smooth factor” discussed here is the indefinite (t-)
integral of 6; the estimate for it, together with the elliptic estimate from
Section 5 and an interpolation argument, given a bound on 6% in terms of
the “data,” “coherency,” and “extension” terms of the Hessian of J, .

Recall from the preceding sections the geometry of the coherency opti-
mization problem:

0<To< Ty < Ty time limits
0<P <P slowness limits
Ru = [O,T,,]X[Pl,PZ] _
R = 0.2 x (PP [ VT 0b2

(data, model rectangles);

the function spaces involved in its setting:

= 6€H1R):6(0)p):—co——_a{)(Tap=_01—“’
> { o a0 g

| log 9| g1,y < €}

3" = {66 € H'(Ry) : 65(0,p) = 0 = 65(T2,p)}
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and the maps:

S: Y — L*R)

DS: Y x5 — L¥R)

Q: Y — L(R)

DQ: S xY — L*k)
It will be essential in the arguments given below that T, be related appro-
priately to Ty, as follows. For & € ¥, the L>°-bound on % implies that

{(To, P;) = supp, <p<p, {(To,p)
_<_ %Toel. =27

whence
(Z,P) = SUPp <p<P, 7(Z,p)
< 2Zet = Tpe?®

Set Tp = Toet". Then it follows that for any py,p2 € [P1, Pa),

7(¢(To, p1),p2) £ T2
Define

Rz =[0,Z] x [P, P]
Then for 60 € HL.(R), 5 € ¥

CH(S”(; (o] THHI(Rz)
C'l| 89| i (ry)

16011 12 5)

IAIA

and similarly for L2-norms.

Here we have introduced the habit, to which we shall uniformly adhere,
of denoting by C,C’,... constants which may be chosen uniformly over 3_.
We shall make no attempt to identify optimum choices of such constants, so
that the end result of our argument is only qualitative in nature.

Recall from Section 2 that the determination of ¢ from band-limited data
requires that ¢ be “rough” in some sense. For convenience, we restate the
basic “roughness” criterion, phrased in terms of an (arbitrary) Dirac kernel

h(z) = 2ha(5)
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where h; satisfies the usual requirements:

hi € CP(R), h(0) >0, hy 20,

/h1=1.

Then {eh!} is bounded in L', and defines a family of “low-cut” filters, i.e.
convolution with eh’ suppresses Fourier components at frequencies < 0(%)

For c € HL (R), ¢ > 0,A > 0 define

rld(z,6,A) = < |ehe * /|
AJ-a
1 [=+%

rled(z,4) = < |<*
AJz-s

and for any Zg > 0,

rc)(Zo,6,A) = 0<izn<fz0 rlcl(z,€,A)

(o6 A) = sup rld(zeA)
0<2<Zs

FlA(Z0,A) = sup 7ld(zA)
0<2<2p

The main step in the proof of Theorem 1 is embodied in:

Theorem 4 There exist constants m, My, My, g, and Ag > 0 depending on
To,Tl,Tz,e*,Ko,Kl, and K* so that if

(1) f € & satisfies (4.1) and m} <m;

(i) U € Y is consistent with D € L*(Ry),t.e.
S[ol=D

(iii) o € ) is coherent, v = [c] for c € H (R);
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(iv) for some €,A, Zg > 0 with € < €g, A < Ay, and

7(Zo, P1) = 2fozo dz\/ cztz) -PI>To

the following inequalities hold:

T,[C](ZO, € A) 2 Ml
M,r.[c)(Zo, €, A) > max(r*[c](Zo, €, D), Flc](Zo,A)

Then there ezists p > 0 depending on Ty, Ty,T3,£*, Ko, Ky,0, and X so
that for 6% € Z ) '

(69, Hess Ja,,\5f1)H1(fb) > ﬂ”éf)”%{l(ﬁz)

Before giving the proof of Theorem 4, we digress to demonstrate the
meaning of condition (iv) in the theorem, and show that the set of v satisfying
it is non-empty.

Let co,6c; € C°(R) N L*(R), so that
z+1
0<r,.§/ | * 6P <r*, —c0<z<
z-1

and take 7 = sup,cg 71 |6c;|?. Clearly we can choose §¢; so that r* > r,, 7
achieve any prescribed values. On the other hand set

bce(2) = 266c1(§)

ce(2) = co(2) + bcc(2)

for 0 < z < Zy, cut off to constants elsewhere. Then {log c.}<¢, is bounded
in H'[0, Zo], for suitable ¢, but

]_ z+e€
r.—O(e) < -2—/ k! * c[2 < + O(e)
€ Jz—e

= [Tl =r+0e

2¢€ Jz-¢
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Thus with the choice A = 2¢, the quantities

r.[ce](Zo, €, 2¢€),
r* [CC](Z(), €, 26), F[CC](ZO, 26)
stand in more-or less fixed proportions throughout the set {c.}. We conclude
that, whatever the values of the constants My, Ma, € A specified in Theorem

4, the set of travel-time velocities satisfying condition (iv) is non-empty —
simply take # = 9[c.] for sufficiently small ¢, and a suitable choice of co, éc;.

Also the meaning of condition (iv) is clear from this construction. As
¢ — 0, the perturbation §c. becomes smaller, but its derivative has uniformly
bounded (above and below) mean-square over intervals of length €, and this
even after convolution with the oscillatory kernel ehl. Thus ¢, has significant
oscillation everywhere on the scale ¢, i.e., ¢, is “uniformly rough.”

In the estimates which follow, we will write for convenience

6Q = DQ[v)6v
§5 = DS[v)6v

Also, for any function u of (¢, p) or (z,p) we shall denote by

Ju

the function
(t,p /dtu '.p) or (z,p) /dzu 2, p).

To begin the proof of Theorem 4, note that

(60, Hess J, A[7] - 60)

= “‘SS”L2(R1) + UzlléQ“%z(fzz)
067
bz

(6.1)
+A?

L?(R2\Ro)

because of the consistency and coherency assumptions.
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The second term in (6.1) is most interesting. It follows immediately from
the definition of @) that

§Q = %‘%}—-2p</62)%—4p(/666)g—z—3pﬁ266
= (g—p(&?or))oC—4p</656>g—z—3p1~)256

obv p Ov? 2
{ap —*2-(/(1251))-5;—3]7'0 6U}OC

where we have written for convenience §v = §% o 7. Note that dv is not the
perturbation in v resulting from a perturbation in c.

Choose a test kernel g € C°(R,;) with ||g||z:(r) = 1 and suppg C [0, o0).
Then

0 1 ov?
g*x(6QoT1) = 8—pg*6v——§p(/d26v)g*a—vz-+E1
—3pg * (v26v)

The error term E; is the commutator of a multiplication operator and con-
volution with g:

si=o{(fere) o () 7))

for which a standard estimate gives

IEx (-, p)lc2pom < Cmgll8v(-, p)llLee(m)

(We have used the notation

mt = [ dz*lg(2)]

for the moments of |g| as explained before.)

Set . o2
v
Kg=——2-p(/d26v>g*—a7
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The next goal is an L? estimate for K, on the domain Rz = [0, 2] x
[Py, P;]. Recall that Z is chosen so that

To<7(Z,P)<7(Z,P) LT
First note that for its indefinite p-integral,

P2 27
/ dp K, = g*(8Qort)—gxbv
P1

n

P2 P2
hd / dp El
4

p=p1 1

Since composition with 7 and (, the indefinite p-integral, and 2-convolution
with g are all bounded operators on L (R X [p1,p2]),

P2
. dpK, o] < C {“9 * 5v(, P )| 20,77 + 19 * Sv(5 P2)l 120, 7
Obv
+16Q1l 2 (z,) + Mg M }
L2(Rgz)

Now assume that

=

and choose ¥ € C°(R) with ¥ =1 on [0, Z]. For p € [P, P,], denote by 6%
the extension v by a constant for z > Z. Then (since suppg C R*)

lg * 8v(P)3eozy < g *65(,p)lI7arm

_ 712_;/dk|g(k)|2@7(k)|2

1

since 67 is constant for z > Z and év(0,p) = 0.

2

(5, p)

INA

L*(R)
2

0bv
—8—;(',17)

IA

L([0,2])
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Define

_ g(k)|
@
From the bound
v 60
az ( ’p) S | —a?( P)
L2?{0,2] L2[0,T5]

valid for 6% € ) _, we get for any P, <py < p; < P,

069

P2
dp K g(-,px)

2
g < C {Cy [
1 L20,2]

+ " a;:( Pz)

L2[0,T/?]

2
} + HEQ“Lz(ftz)

L2[0,T>/2]

2
} (6.2)
Lz(fh)

Next we estimate the p-derivative of K:

0K, _ 1 Ov?
- ‘5[(/6’””)9*5

+p(/dza§v)g*——+p(/dz&v)g*aa:;i}

The first term is clearly dominated in L?[0, Z] for each p by a (:-dependent)
multiple of

06v

tma|9e

||5‘7(‘,P)||L2[o, 1T
From the definition of 6@,

/dz35” /d {6Qor——p(/dz6v) ~3p [ 261)}

which is bounded by a (3°-dependent) multiple of

16Q(-, p)| 2o, 51 + 165(- P 210, 172)
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Finally we note that
c

CT Ty
for some ¢ with
lellzro.z < €
so that for any p € [Py, Py,
2,2
()| <c
0z0p 12[0,2]
The upshot is the estimate
0K
2 20o0)| < C{I8Q1: Pl apo gy
p L2[0’Z] 2
+ 1165(-, )| oo, 1741} (6.3)
Integrating in p, we also get
0K .
apg < Cl16QlI Lagay) + 1601 2(i,)) (6.4)
L?(Rz)

Now we combine (6.2) and (6.4) to estimate K, via a simple interpolation
inequality, which is a special case of Gilbarg and Trudinger (1983) Theorem
7.28:

For u € H?[a,b],a > 0:
"ne < "2 g 2 6.5
1w l|22(08) < allu”l|z2p05 + a”uHLQ[a,b] (6.5)

where C = C(|b— al).

Apply (6.5) to u(p / dp'K,(z,p) for arbitrary py € [P, P,], integrate
the result in z, and use (6. 2) and (6.4) to obtain
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2
L2[o,1T;]

a5 ||?
ES L2(}'22)
253

2 ~
Az Lz(ﬁz) + I‘éQ”zz(ﬁz)} + aC,{HaQ“zz(fb) + ”‘Sv”iz(fg?)}

HKg”m(nz)_a{ ([Pz Py |2+, po)

+|

+ (my)?

With the choice

o* = max(e;, m}),
o, = min(€g, m;)

this becomes after integration in py from P; to P;

Kolaryy < C2 {]52

LQ(R ) + “ v“Lz(}'gz)}

£ + 2)6QN2 4,

(6.6)

The next step is to show that K actually dominates the indefinite integral
of §%. It is at this point that some constraints on ¢ (hence on c¢), other than
coherency and membership in ¥, become necessary. Recall that

1 ov?

K, = —§p(/ dz §v)g * 5
Thus K, is the product of a relatively smooth factor (the indefinite integral)
and a relatively rough factor (the derivative). Clearly, some estimate of the
smooth factor must be possible, provided that the rough factor is sufficiently
uniformly rough. The following simple lemma gives a crude criterion of this

type:

Lemma 2 Suppose that u,® € C°(R). Set for A >0, a<b

1 [=+%
r(e,8) = % x__’ Juf?
r.(A) = inf r(z,A), r*(A)= sup r(z,A)
z€[a,b] z€[a,b]
Then for any A > 0, (L*-norms):

m(A)

16 . :
[ 1@l Zepay — 5 (r=(B) 47 (D) A|2|[Za(a
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Proof: Set
& 1 [=+%
alz) = x

I——

Then the Cauchy-Schwarz inequality gives

z+2

— 4 4
(y) - Ba(@)] < gak [ o
2

r—

z+g - 16 | +%
Nl 2 [oater - 08 [ 0] [
2

- +’2—
> ABa(e)r(a) - g A (@) [ |of

|
N

Similarly
- 1 [z+% 16 z+3
2> 2 _ 2 112
ARa(@)P 2 5 [ 0f - gar [ e

Thus
=+ ro(A) [=+% 16 . =+
[ ez T 1 o B0 a) 4o apat [ o
=3 =3 =35

2

Now sum both sides over z = (k + 1)A, k = 0,...[%3%] to obtain the result.

q.e.d.

We shall apply Lemma 2 to K, with the identifications
1
® ~ —5P / dv
u~ g2 ()
Note that 02 3
ov” 4 2.2v-2.9€
0z (1=<p) oz
so that
Ov?



We will assume that the length scale A is chosen so that suppg C %, %]
Then a slight refinement of the standard error estimate gives

1 [=+%

X/ s |E2| < CA*Mr5(A)ay(A)

where we have written, for any compactly supported measure h, and Zg > 0
to be determined:

1 (=% de
(A) = —_ h* —
7'};( ) zes[ggo]A -2 ; dz
. 1 (% de|?
melB) = LR M T
1 [+% de|\?
WB) = b Als ('hl* E)

For various ¥ -dependent constants C;—Cy, any z € [0, Zo),
Cirga(B) — Cab?ri(A)ay(A)

I 0z

1 +% 2

S_
AJ-g

< Cary(A) + CaA?r;(A)ag(A)

Accordingly Lemma 2 implies, so long as Zy < Z, for pp € [Py, Py]

2

2 2
1 Ko(s P20,z 2 CP7Tg,0(A) \Udz sv(:,p) L2[0,Z]

—C'(rga(8) +15(A) + r3(A)ag(A)A%||6v(, P)IEep0,20 (67
These estimates have no force unless the quantities ry ,(A) and
i (A) = (rgu(B) +15(A) +15(A)ag(A))

are comparable. These quantities depend on the parameters A and Z, and
on the kernel g (all of which are still to be chosen) — and, of course, on the
velocity profile c.
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To further manipulate the norms of §v, 63, we require an estimate on the

p-derivative: after some algebra,

/dz Sv(-, p)

2

4
dp L2[0,Z0]

2
= 2(/ dz 5v(-,p),/dz (60 oT + %p (/ dz 6v) %%— + 3pviév

2

< o|fazst.n)| +CWCoTC Pz

L2[0,Z,]

Here we have employed an estimate on norms of products:
Lemma 3 For f € H[a,b], g € L*[a,b], define

/zfg=h(z), a<z<b

Jl
a 0

Then
[Rllo < ClIfllx

for a constant C depending on a,b.

Proof: Since

b = 1) [[o- [[az5) [

1Ello < || fllzee ”/gHo 4 (/ab 0 [/: &2 /02, g] 2)
cetmtfome [ arr] [ [[]

whence the required inequality follows.

we have

Thus Gronwall’s inequality gives

2
‘“/dz év(-, p) - “/dz 8v(+, po)
L2[0,2Z,)
< CnéQlliz(i{g)

2

L2 [O,Zo]

6.13
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for any po € [Py, P,]. Thus

P 2

dp p* “/ dz 8v(-,p)

2

P, Lz[O,Zo]
P3 — P3
Z (”/dz 50('3170) - CH‘SQHiz(ﬁtz)) 2_3—1—

so that (6.7) implies, after integrating the preceding inequality in py from P,
to Pg,

L2[0,Z,]

o] F: AT
> C'ryx(A)]| /dz 9|1 220, 2o [Py, Pa))
—C"{118Q 1322,

+ 75 (A)A2169]122(t0, 7011 e

Now concantenate the above inquality with (6.6) to get

Tax(A) H/&v

= C"{116Q 1228, + 75 (A)A[60]122 00 2011 P }

2
L%([0,Zo] x[P1,P2])

at 2 B - 1
< L 60005 + Cla + ) I6QUR

a, a
Next recall that the L?-norms of §v and 6% are related by
16v]|z2(rz) < Cl189]| 25,

as noted at the beginning of the section, which allows us to simplify the
above inequality to:

roe( )] [ dz 8|ago zoxr

a*)? . .
sc(( ) +n(A)A2) 16510,

O

1
+C’ (1 +a* + a—) 16C 1722 (6.8)
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It is convenient at this point to put the left-hand side in terms of 6% also, by
means of Lemma 3. Since

z T(Z,P)
’ ’ _ o -
_/(; dz 51)(2 ap) - A dz v(m,p)&v(m,p)
we can apply Lemma 8 with f = (3(-,p))~Y, g = (-, p)é9(:, p), to get

s

whence (6.8) implies, after integration in py from P, to Ps,

ron(A) ” / 53

L2(45)

<C|‘/6v *sPo)

L2[0,7(Zo0,po)] L2[0,Z]

<0 (9L 4 ri@a) I e,

+C'(1+a" + )|I6Q|IL2(R2) (6.9)
Here A3 is the region
{(z,p): L<p< P, 0<z<7(Z,p)}

At this point, we determine Zy: set

Zo=¢( (‘I‘To, Pl) = inf C( To,P>
2 pEP, P2
Thus 3
A3z C Ry

The interpolation inequality (6.5) and (6.9) now yield

3 C *\2 . N
ity < [8+ gy (L + ri@0a7) | 6ol
C(1+a +(1/a,.))
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It follows immediately from the Dirichlet condition at £ = T, in the

definition of Z that

2

060
Ity < Wl +€ |32
L?(Rz\Ro)
It is only slightly more difficult to estimate
666 ? )
1691172\ a5) < 6@, (6.11)
L?(R2\Ry)

In fact, from the inequality

05" 150" _ o (108 | 5o

Jp oz | — Oz

which holds at every point in R;, and the already-used inequality

. 0bv
”‘Svnm(izg\é@) SV —To

Bz
(Dirichlet condition at z = T5!) follows the estimate

dév
||5U|IH1(R \Ro) (Il

whence from the trace theorem

L2(R2\Ro)

+ ||5Q||L2(ic2))

L2(R;\Ry)

067
155 P1>||L2[T0T21<c{|| 5

+ ||5Q”L2(ft2)}

L?(Ry\Ro)
Any point in 1~21\A3 lies on a curve of the family
p+ 7(2,p)

which joins it to the segment [Ty, T3] X {P1}, and 6Q is a first order partial
differential operator (acting on §%) whose principal part is a tangent vector
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field to this family of curves. Now (6.11) follows from the standard energy
estimate for hyperbolic systems.

Combining (6.11) with (6.10) we get

. c o) 1ss
Wetiny < [0+ 5y (S5 +ri008%) | Wit

2

, 86v
v ot |22

L2(R2\Ro) |

where C’ depends on 3, a., a*, and ry . as well. Now recall the conclusion of
Theorem 3 which we rewrite in a suggestive way:

060

Oz

2
”55“22(31) + (m})?L;

L2(R1\Ro)
> L6303 ) — (L3 + LDI163N 325,

Evidently Theorem 4 has been proved if we can make the various choices
deferred above so that

C (a*)Z

2 2 . 2
w42 |9+ 50 (S +rin
To understand the Lh.s. of (6.12) we first examine o = max(e,, m}). We
relieve the reader’s suspense by identifying the test kernel ¢ with the kernel
eh, appearing in the statement of the theorem, so that the issue becomes one

of choosing € > 0. Note that with this identification

< L? (6.12)

m, = /dz|zeh2(z)| = O(e)
and similarly
eg = O(€)
On the other hand, from the definitions,
ra(A) = 1(Zo,A€)
rga(B) = 7u(Zo,A€)
rg(8) = (Zo,A)

g
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while Young’s inequality gives
as(A) < CF(Zo, A)

provided that e < A, say, so that the support of k. is contained within a fixed
number of A-intervals. In fact, we shall adopt the convention that ¢ < CA?
and assume that A is sufficiently small that ¢ < A as well. Then

rea(B) < C(ru(Zo, €, A) + 17(Zo, €, A) + (20, A)?)

where the constant now depends on the test wavelet h; as well as on 3° —
this will be the default dependence for constants “C” for the rest of the
argument.

Note the uniform (over ¢ € Hj._ corresponding to ¥ € ¥_) constraints, for
all ¢, A > 0:
r(Zo,6,A) < 1r*(Zo,€,A)

F(Z0$A)
T*(Zo, €, A) S CF*(Z(), A)

< C
< C

Choose a lower bound M; and a relative lower bound M,, in the state-
ment of Theorem 4, subject to these constraints, and assume that c satisfies
condition (iv) of the theorem (recall that we have already met the constraint
on Zy, viz.

To = T(Zo,Pl) )

That is,
M, < rdZo,e,A)
7(Zo,A) £ Mari.(Zo,e,A)
r*(Zo,6,A) < Mar.(Zo,¢e,A) (6.13)
Then the ratio c .
ron(D) ((i.) tr (AW)

is O(e+ A?) = O(A?) for coherent e ¥ for which the corresponding velocity
profile ¢ satisfies (6.13). Then we can choose 8 = O(A) so that the Lh.s. of
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(6.12) becomes O(A) as well. In particular, for sufficiently small A, other
choices as above, the L.h.s. of (6.12) is

1
SCWd+ LA <L

whence finally

069

1 . -
§L§”6v”§p(ﬁo) < ”55“12(31) + C||5Q||iz(iz,) +C Or

(6.14)

L2(R;\Ro)

The r.h.s. of (6.14) is bounded by a multiple of the Hessian quadratic
form, the factor now depending on the penalty constants o and A as well.
This completes the proof of Theorem 4. q.e.d.

The proof of Theorem [ is now immediate. Given appropriate Ty, 11, T3,

Ko, K1, K*, Pi, P, co,c1, and ¢*, let 3. denote the collection of ¢ € HL (R)
satisfying

(1) c(z) =¢c, 2<0

(ii) |log clleory < ¢* (< —log P,)

. : 1
(ii1) c(z)=¢c if 2/0 a2 P > To.
For some £* = {(c*),

[ log cllmo,z1 < € — [[log Ble](-, )l mrsjo, 7y < &

Then c € 3. = ?[c] € ¥, as defined before the statement of Theorem 4.
Let m be as in the statement of Theorem 8 and assume that f € &'(R)
is chosen to satisfy

9¢

oz

9¢

0¢
f*g;

K E

2
L*(R)

> K,

— Ko |8l 2(m)
L2(R)

L*(R)

for ¢ € H'(R)

m}gﬁz
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Choose a test wavelet h; as described above. Then choose M;, M, A,
and € as in the statement of Theorem 4 and define

Y = {ceY,:for A ewith

0<A<A, 0<e<g and 7, satisfying

Zo
2 [*\)= - =T,
the following inequalities hold:
M, < r,(Zo,€,A)
Myr.(Zo, e, A) > max(7(Zo, A),r*(Zo, €, A))}

Then c¢ is constant for z > Zg, so ¥[c] is constant (for each p € [Py, P;]) for
t > 7(Zo,p), whence a fortiori for ¢t > To.

The remarks after the statement of Theorem 4 show that, for arbitrary
(but consistent) choices of the various parameters, the set 3" is nonempty.

Finally, assume that in the definition of J,»,
D = 5[] = S[#[c]]

for c € .. Then
Joa[0lc]] =0

while Theorem 4 shows that the Hessian of J, ) at 9[c] is positive-definite.

Therefore the implicit function theorem implies the existence of

1. an open neighborhood U in L*(R;) of the set
{Sle]:ce £}
2. an open neighborhood V' in 3~ of the set
{olc]: c€ i}
so that for each D € U, the problem

minimize;esJo,) [9]
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has a unique solution & = I[D] € V, which is moreover a Lipschitz continuous
function of the data D.

Define the averaging operator

A:Y — L(R)

Ab(z) = Pgi 2 /P P dp [(—v(‘r(zlm) +p2}

Remark. A performs a version of the operation “normal moveout correction,

stack” from the reflection seismic data processing stream: see e.g. Yilmaz
(1987), Section 1.4.

Then for ce ¥,

-1/2

Adlc] = ¢
Also, A is Lipschitz continuous in the topologies indicated in its definition.

Set 3
I=Aocl:U— L},

Then I has all of the properties indicated in the statement of Theorem 1. In
particular, for Dy, D, € U,

11(D1) = I(D2)||210,21 £ L[| D1 — Dal|2(ry)

for suitable L*, depending on the various parameters defining 3" and on f.
This completes the proof of Theorem 1. q.e.d.
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7 Non-Elliptic Sources.

In this section we give a very brief sketch of the state of affairs when f is
smooth. The necessary regularization arguments have become quite com-
monplace, so we shall concentrate on the steps necessary to modify the proof

of Theorem 4.

Thus, suppose that f € C°(R): then the best “near-elliptic” estimate
might have the form

94
"z

0¢

Or

82
2 K 5%

> ~ Ko |8l 2qmy — K2
L2(R)

L?(R)

(7.1)

L*(R)
for ¢ € H2(R). The size of K, measures the “passband” of f: i.e. if | F(w)]
is uniformly large in an interval ; < |w| < Q4, then K3 = O(1/Q).

The analogue of Theorem 3 is

Theorem 5 Given P, > P, >0, Ty >To >0, K* > K; > 0, Ko, K, 2 0,
and ¢* > 0, there exist m, Lo, L1, L2, L3,> 0, so that if f € Cg°(R) satisfies

(7.1) and m} < m, then for v € SNnHY(R), 66 €N H: (R)

06v

| DS[5]68| L2(ry) = L1 .

L2(Ry)
a5
oz

— Lo||88|| 12,y — My Ls o
L2(R1\Ro)
0%6v

— L
2N 92

L2(Ry)

The principal new ingredient in the proof is the higher-order estimate for
the plane-wave problem

“DS()[ﬁ, 5,]56”L2[0,T] < 02”6'5”;12[0, 1/27)

for log o € HE (R), 66 € HE (R). See for instance Suzuki (1988) for similar
estimates.
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Most of the proof of Theorem 4 goes through as before, except that now
the smoothness constraint implicit in Theorem 5 conflicts with the roughness

conditions. For example, for a coherent v € " NHZ_(R), its corresponding
c € H} (R) satisfies

1 r=+% 1 [=+%
il eh'*c’2=—/ eh *cn2
Ag[_% e = 3 [ ek

€
< CK”c””%ﬂ[z—2A.z+2A]
For the constraint € = 0(A), which we were bound to impose this gives
< CA||c"||z2p0.2]

So over any bounded set in H?(R;), r. is O(A) over coherent travel-time

velocities. Thus estimates of the sort developed in Section 6 can only succeed
if

(1) f is sufficiently “broadband” that (7.1) holds with small K, relative to
ZaKO,KlaK*;

(i) target velocities exist in the intersection of Y. and a sufficiently large
ball in H*(R;), for which the regularized cost functional

R T
Jonold] := 5 {11808] = Dllza e,

0v
+ ?||C[0)||32,y + A || 3
PO 02 )
5%
+ p2 a_v }
TllL2(Ry)

takes a sufficiently small value, with p = O(K3).

Then the Hessian of J, ) , will be positive-definite at target velocities as
described in (ii), while the value of J,, will be small enough to conclude
the existence of a nearby local minimizer. Since it will no longer be pos-
sible to have J = 0, only an approximation will be obtained even for data
corresponding exactly to ¢ € . NHE (R).

loc
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The reader is referred to Symes (1986b) for details of a similar construc-
tion.
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